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NONLINEAR MEMBRANE SOLUTIONS FOR SYMMETRICALLY LOADED 

DEEP MEMBRANES OF REVOLUTION 

By John N. Rossettos 
Langley Research Center 

SUMMARY 

An expl ic i t  closed form solution is  given f o r  the equations of a nonlinear 
theory for deep membranes of revolution. In the  theory, it is assumed tha t  
s t ra ins  are  small and rotations are moderately small, t ha t  is, of the order of 
the square root of the  s t ra ins .  The solution i s  valid when the nonlinear 
behavior is  confined t o  boundary-layer regions near edges. General symmetric 
surface loads can be conveniently included i n  the form of the solution. 
Results are obtained for  the par t icular  cases of a pressurized membrane and a 
rotat ing spherical membrane, both attached t o  hubs,. Also, resu l t s  are  given 
for  a cap of a rb i t ra ry  shape attached to  a cyl indrical  pressure vessel and f o r  
the a r res t  of a moving m a s s  by a pressurized spherical membrane. 

INTRODUCTION 

In the design of space vehicles, membranelike structures (i. e. ,  structures 
with negligible bending s t i f fness )  continue t o  f ine  wide application. Large 
displacements of such structures must be considered, for instance, i n  the design 
of deployable space power configurations, radar antennas, and pressure vessels. 
Therefore, the solution of membrane she l l  problems, especially i n  the nonlinear 
deflection range, i s  a useful t oo l  for establishing rat ional  design procedures. 

Several derivations of systems of equations appropriate for  the analysis 
of a membrane of revolution i n  the nonlinear range a re  available. 
2, and 3 . )  
of equations given by Sanders i n  reference 3, i n  which the strains are  assumed 
t o  be small and the rotations are moderately small. 

(See r e f s .  1, 
The analysis i n  the present paper i s  based on an approxhate system 

For satisfying the common boundary conditions imposed i n  practice, it i s  
known tha t  l inear  membrane theory i s  inadequate. In  such cases a l inear  bending 
theory solution i s  often added t o  remedy t h i s  d i f f icu l ty .  This s i tuat ion gives 
rise t o  the usual edge zone where bending action insures sat isfact ion of the 
necessary boundary conditions. 
negligible bending stiff’ness t h i s  approach i s  not r ea l i s t i c ,  but a nonlinear 
membrane theory can yield reasonably accurate resu l t s  and avoids the greater 
complications of nonlinear bending theory. The order of the system of equations 

However, fo r  membranes or very th in  she l l s  of 



of nonlinear membrane theory, i n  contrast t o  l inear  membrane theory, is found 
t o  be high enough so t h a t  the usual boundary conditions can be sa t i s f ied .  This 
resu l t  w a s  first pointed out by Bromberg and Stoker i n  reference 4, who a l so  
noticed that  nonlinear membrane behavior i s  confined t o  a narrow region near 
the boundary. 

Nonlinear membrane theory has already been used successfully t o  solve par- 
By using an appropriate nonlinear theory, some deep t i cu la r  membrane problems. 

membrane problems with specific shapes and loading conditions have been con- 
sidered. Also, a l inearized large deflection 
approach i n  the case of shallow membranes has been given i n  reference 6 i n  which 
shallow spherical and conical membranes internal ly  pressurized and fixed at 
edges a re  considered. 

(For example, see re fs .  2 and 5 . )  

The purpose of the present paper i s  t o  obtain a general closed form solu- 
t ion  t o  the equations of nonlinear membrane theory. The solution has not 
appeared before and i s  valid fo r  deep membranes of revolution of a rb i t ra ry  
shape under symmetric surface loads. For displacement boundary conditions, the 
constants of integration a re  given by closed form expressions. For s t r e s s  
boundary conditions, the constants of integration can be calculated i n  a 
straightforward manner as indicated i n  the  par t icular  problems treated.  

Complete solutions a re  found for  four par t icular  problems. The first two 
involve a pressurized spherical membrane and a rotat ing spherical membrane, 
both attached t o  hubs. The other solutions concern a cap of a rb i t ra ry  shape 
attached t o  a cyl indrical  pressure vessel and the a r r e s t  of a moving mass by a 
pressurized spherical membrane. The solutions obtained by the approach used 
are  shown t o  be accurate t o  within small errors  of a s ta ted order of magnitude. 

SYMBOLS 

a character is t ic  dimension of membrane 

c,c1,c2,d,dl constants of integration 

E Young's modulus 

H horizontal component of edge load 

h thickness of membrane 

energy parameter kE 

2 



M 

N~ 9 Ne 
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PHJ % 

PnJPt 

R 

RL 

r 

S 

t 

U 

v 
v 

W 

w1 

W1, max 

X 

Z 

U 

uJ 

E 

rigid mass 

stress resultants 

characteristic pressure loading of membrane 

horizontal and vertical components of surface load 

normal and tangential components of surface load 

radius of spherical membrane 

radius of cylinder 

principal radii of curvature 

horizontal distance 

arc length 

time 

horizontal displacement 

vertical component of edge load 

velocity 

vertical displacement 

vertical displacement at hub 

maximum vertical displacement at hub (see eq. (B35)) 

distance along cylinder 

vertical distance 

factor for arc length along meridian 

value of u at juncture of pressure vessel 

Pa small parameter, - 
Eh 

strains 

angle in circumferential direction 
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*e, *e, max 

*L 

n 

Subscripts : 

e 

J 

m a x  

Poisson's ratio 

curvilinear coordinate along meridian 

value of 5 at each edge of membrane; i = 1,2 

value of 5 at juncture of pressure vessel 

lower limit on certain integrals which appear in solutions 

mass density of membrane material 

angle between axis of revolution and normal to middle surface 

rotation of the normal to the middle surface in a meridional 
plane 

boundary-layer rotation, and maximum value 

rotation calculated from linear theory 

frequency of rotation 

boundary layer 

juncture 

maximum 

A prime over a symbol denotes differentiation with respect to 5 .  

A bar over a symbol denotes a physical quantity. When a bar does not 
appear, the quantity is nondimensional. (See eqs. (17). ) This rule does not 
apply to the physical quantities a, E, h, and p. 

FUNDAMEXPAL EQUATIONS 

The geometry of the undeformed middle surface of a general membrane of 
revolution is shown in figure 1. Also shown is the notation for the membrane 
stress resultants along the meridional and circumferential directions 
and Ee, respectively. The positive directions of the displacements u and 
and the rotation T, the rotationally symmetric loads per unit area GH and GV 
(or Gn and et), and the edge stress resultants H and 7 are given in the 
figure . 

- 
NE - 

- 
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The m i d d l e  surface i s  defined by the parametric equations 

The parameter E i s  the curvil inear coordinate i n  the meridional direction. 
Arc length on the undeformed middle surface t s  given by 

where 

Ff = d cos cp Z f  = E s in  cp 

and primes denote different ia t ion with respect t o  E .  Lines of curvature coor- 
dinates are  used, and the principal curvatures are  given by 

The governing equations are  based on a nonlinear theory for th in  shel ls  
given by Sanders i n  reference 3 i n  which small s t ra ins  and moderately small 
rotations are assumed. The system of equations of the nonlinear membrane theory 
are  derived by u t i l i z ing  the principle of v i r tua l  work with appropriate s t ra in-  
displacement re la t ions given i n  reference 3.  In t h i s  manner equilibrium equa- 
t ions with a consistent s e t  of boundary conditions can be derived. 

In  terms of the notation used, the strain-displacement re la t ions are  

1 
a 

- 
= = ( i j l  cos 9, - i11 s i n  c p )  

The s t ress -s t ra in  re lat ions are  

5 



The principle of virtual work (which equates the internal virtual change 
in strain energy to the external virtual work of the loads pH and Cv and 
the edge stresses H and 7) is expressed in the following form: - 

If the relations in equations (4) to (8) axe now used in equation ( g ) ,  and the 
indicated variations are carried out, integration by parts gives 

By equating to zero the coefficients of the variations 
equation (lo), the following equilibrium equations and 
obtained: 

Equilibrium equations : 

c ,’ 

of the displacements in 
boundary conditions are 

6 



Boundary conditions: A t  an edge 5,  or  S e )  prescribe ( 

(14) 
- w or  G5(sin cp + 5 cos 9) = ~i 

The surface loading may be divided in to  two general classes.  
of loading, t h e  direct ions of t he  load components Fv and pH are  always 
pa ra l l e l  and perpendicular, respectively, t o  the axis of revolution of the mem- 
brane; the magnitude does not change with deformation. For instance, i n  the 
case of a membrane spinning about the axis, & = 0, and cH i s  given by the  
centrifugal forces. In the  second general loading s i tuat ion,  the loads are  
fixed i n  magnitude but a re  always normal Fn and tangential  Ft t o  the middle 

surface during the  deformation. In t h i s  case, fo r  the moderately small rota- 
t ions considered, t he  cmponents perpendicular and p a r a l l e l  t o  the axfs of 
revolution are given by 

In one type 

p~ = Ft(sin cp + 5 cos c p )  - ,,(cos cp - s i n  c p )  (16) 

For example, f o r  a pressurized membrane, Ft = 0 and Cn equals the in te rna l  
pressure. 
i n  equations (15) and (16) can be dropped and s t i l l  be within the accuracy of 
the present solution. 

In the present theory, it i s  noted fur ther  t ha t  the terms with 

It i s  convenient t o  introduce the following nondimensional vasiables and 
parameters where bars denote physical quantit ies:  
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Pa 
Ea where E = - i s  a small parameter which i s  of the  order of magnitude of the 

s t ra ins .  The quantity p i s  sane charac te r i s t ic  loading which i n  a given case 
shall be selected so that it has uni ts  of force per unit  area. The quantity a 
i s  some character is t ic  dimension of the membrane. 

In terms of these nondimensional variables the governing equations are  

k E ( s i n  cp + cos cp = qV ,I‘ 

U 
Ee = - r 

From equations (20 ) ,  (21), and (22) the following compatibility equation may be 
obtained: 

(reg)' + - 1 q % o s  cp 
2 

cos cp - 9 s i n  cp = 
U 

This equation w i l l  be used i n  the next section t o  obtain a solution fo r  the  
rotat ion Jr .  

General Solution of t h e  Equations 

A closed form solution of the governing equations (eqs. (18) t o  ( 2 3 ) ) ,  
O ( E ’ / ~ )  with respect 

- 
which i s  accurate t o  within errors  of order of magnitude 
t o  unity, i s  obtained by using boundary-layer methods and asymptotic integration. 
(See, f o r  example, r e f s .  7, 8, and 9. )  A t  t h e  start, assumptions which involve 
orders of magnitude are  made which are ver i f ied later by the solution. Near an 
edge where boundary or continuity conditions are prescribed, it i s  assumed tha t  
a boundary layer ex is t s .  Within the boundary layer it i s  fur ther  assumed that 

the  rotat ion 9 = O ( E - ’ / ~ ) ,  and Jrl = O(E-’/’)$ = 0(C1), Jr dE = 0(1), and 
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= 0(1). The s t resses  NE and Ne are  assumed t o  be O(1) everywhere. 

Outside the boundary layer, I) = O(1). 

The solution i s  t o  be obtained f i r s t  by solving the equilibrium equations 
(eqs. (18) and (19)) f o r  NE and Ne i n  terms of the  rotat ion JI, and then by 
subst i tut ing these resu l t s  via  equations (23) in to  the compatibility equation 
(eq. (24)) t o  obtain a single  equation f o r  I). Equation (18) i s  integrated t o  
give 

rNE(sin cp + E$ cos cp) = c - g(E) 

where c i s  a constant of integrat ion and 

Since E$ i s  s m a l l ,  equation ( 2 5 )  i s  used to  write NE as 

NE = r s i n  - g(E)(l cp - EJI cot cp) + O ( E )  (27) 

This s tep l i m i t s  t h i s  method t o  values of cp tha t  a re  not too small ( i .e. ,  
tnose for deep membranes) so t h a t  cot cp does not become too large.  It i s  
also noted tha t  the  t e r m  with EJI i n  equation (27) i s  retained because it will 
be different ia ted la te r ,  and therefore i t s  order of  magnitude will be increased. 

NOW, i n  order t o  calculate  Ne, it i s  necessary t o  d i f fe ren t ia te  "E; 
t h i s  term i s  given by 

s i n  cp + O(E1/2) (28) 
a cos cp E$' cos cp -v 
R E sin29 sin+ I-- + 

The term Ne i s  obtained by using equations (lg), (27), and (28) and i s  
wri t ten as 

N =  

The s t ress -s t ra in  equations (eqs. (23)) are used next t o  write the compatibility 
equation (eq. (24 ) )  i n  t he  form 

9 



( N E  - vNe)cos cp - Jr  s in  cp = @d - "(rN,t)' + 1 2 N2cos cp 
U a 

If the expressions f o r  the s t r e s s  resul tants  a r e  now substi tuted into equa- 
.tion (3O), the  following equation fo r  the rotat ion Jr  is  obtained: 

(c - g)cOs cp + (c  - g)cOs cp 2 + E J r l  + rpv cos cp cot cp - rpH cos cp 
r s i n  cp a sin% (RE ) 

- vr(% s in  cp + pH cos c p )  = s i n  cp + 2 @'cos cp + o(€ 1/2 ) (31) 

The solution f o r  Jr  i n  equation (31) can be written as 

The term JrL 
magnitude unity. The solution for JrL can be obtained readily from equa- 
t ions (18) t o  (23) by se t t ing  

namely Jre, i s  of the order of magnitude O ( e - l l 2 )  and represents a homogeneous 
edge solution which decays rapidly away from an edge. 

i s  the resu l t  of l inear  membrane theory and i s  of the order of 

E = 0. The f irst  term i n  equation (p), 

When equation (32) i s  substi tuted into equation (31) various terms of 
l inear  membrane theory are  canceled ident ical ly  by the l inear  expression 
for  JrL ( i .e . ,  i s  subtracted out a t  t h i s  stage 
given by 

Jr ,  so tha t  what remains i s  1 

The assmption i s  now made tha t  the  membrane geometry i s  suff ic ient ly  smooth so 
tha t  different ia t ion does not increase the order of magnitude of the  quantit ies 
a, r, and R,t. Furthermore, i f  previous boundary-layer assumptions are 
invoked and only large terms of order O ( E - ~ / ~ )  are  retained i n  equation (33) 
(which has a re la t ive  error  of O ( E ~ / ~ )  compared w i t h  unity), the following 

10 



boundary-layer equation for  $, i s  obtained: 

$ef1 + $ q({,c)$e = 0 

where 

The solution of equation (34) can be found by noting f i rs t  tha t  it i s  a d i f fe r -  
e n t i a l  equation which contains a large parameter, namely, 1/~. Such equations 
a re  discussed i n  reference 8. Accordingly, it i s  convenient t o  m a k e  the fol-  
lowing transformations fo r  dependent and independent variables. Let 

dx = q1/2dS 

Equation (34) becomes 

(35) 

where 

The quantity pl(x) i s  continuous and order of magnitude unity t h i s  holds f o r  

smooth loading so tha t  q” = - - - O(1)) and can therefore be neglected with 

respect t o  l / ~ .  
solution. The solution for p, then, i s  c lear ly  of the exponential type and 
taking the solution, which decays away from the  edge 
boundary-layer solution f o r  $e: 

2 \ 
dk2 

This approximation i s  well within the accuracy of the present 

El, gives the following 

The assumption that  

t i o n  d i n  equation (37) is  

i s  O ( f - ’ / * )  implies t ha t  the  constant of integra- 

O ( E - ’ / ~ ) .  

I 



Now i f  the membrane has two edges it i s  assumed that  they are  suff ic ient ly  
far apart  so tha t  t h e  boundary-layer solutions can be t reated independently of 
each other. (Note that ,  i n  general, d can take on a different  value f o r  the  
boundary layer near the other edge E 2 . )  Once the rotation is calculated with 
equation (32), a l l  other quantit ies that are  expressed i n  terms of can be 
determined. In par t icular  the expressions f o r  the s t resses  NE and Ne are 

given by equations (27) and (29) .  

9 

The displacements u and w a re  now t o  be determined. For brevity the 

5,  symbol Ef 
or E2. 
s t r e s s  resul tants  NE and Ne, the displacement u near edge 5, can be 
determined: 

(i = 1 or 2) w i l l  represent the value fo r  e i ther  of the. edges 
By using equations (21) and (23) together with the expressions fo r  the 

where 

a 2 s i n  cp va2sin2cp 
f # )  = + 

,2 
5 I 

The f i rs t  two terms i n  equation (38) represent the l i nea r  membrane solution 
f o r  
bution due t o  the rotation 

u, and the th i rd  term (a decaying exponential) i s  a boundary-layer contri-  
$re. 

From equations (20) and (22) and from previous relat ions the following 
expression fo r  w’ i s  obtained: 

+ avS s i n  cp + aJr cos cp 

Equation (39) can be integrated t o  give 

( 3 9 )  
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where 

vu )dE R E sin cp 

VaQ 
r RE sin @ 

The constant of integration in equation (40) has been incorporated into the 
lower limit E N  of the integrals which appear. If the expression for the 
rotation (given by eqs. (32) and (37)) is used in equation (40), the d i s -  
placement w near the edge Ei can be written as 

where 

The first two terms in equation (41) are the result of linear membrane theory. 
In arriving at equation (41), the facts that the boundary layer is exponentially 
decaying and that q(E) and f6(E) are smooth functions (i.e., q'(E) and 
f6'(E) 
of the present solution) the following integral: 

are O(1)) have been used to evaluate approximately (within the accuracy 



The lower l i m i t  E N  of the  in tegra l  i n  equation (42) i s  replaced by 00 with 
negligible e r ro r  because of the  rapid decay of t h e  integrand and because 
has a value which i s  outside the  boundary layer (given i n  the section on bound- 
a ry  conditions). 

5, 

Boundary Conditions 

If the boundary conditions are prescribed with respect t o  displacements, 
and i f  the  membrane i s  attached t o  the  hubs a t  each edge 
displacements must vanish there.  If the two hubs a re  equal i n  s ize  and the  
membrane shape and loading are symmetrical about a midpoint between the hubs, 
then the lower l imi t  i n  the integrals  associated with equation (41) i s  
taken t o  be the value of E at t h i s  midpoint. From symmetry, it i s  c lear  t ha t  

Ei  (i = 1,2), the  

tN 

W ( 5 N )  = 0. 

The constants of integration c and d are now evaluated exp l i c i t l y  f o r  
the  c lass  of problems where boundasy conditions are prescribed on displacements. 
If the membrane of revolution i s  attached t o  hubs, the  boundary conditions a t  a 
hub, say at  E = 5 ,  ( the hub a t  can be t rea ted  s imilar ly  and independently 
of El), are  given by 

u p l )  = 0 

w ( 5 1 )  = 0 

(43) 

(44) 

The solutions for the  constants of integration a re  given f o r  the case of sym- 
metry between hubs since they w i l l  be used for  the  par t icu lar  problems t rea ted  
i n  appendix A. The extension t o  the case of no symmetry between hubs, although 
not considered i n  t h i s  report, offers  no new di f f icu l ty .  In the symmetrical 
case it i s  suff ic ient  t o  consider only one hub a t  The two boundary 
conditions (eqs. (4.3) and (44 ) )  yield two equations f o r  the  constants 
and d. 

5 = E,. 
c 

From equations (38) and (41) the following two conditions a re  obtained: 

and 
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When equations (45) and (46) are solved, c and d are given by 

d = AI- 3/4(cf3 f6  + f5) ] 
6 5=f, 

Note tha t  the order of magnitude of d i s  
t i on  (37) then shows that  the assumed order of magnitude of i s  confirmed. 
With c and d thus determined by equations (47) and (48) a l l  relevant quan- 
t i t i e s  may be calculated. Stresses and displacements are  calculated i n  ap-pen- 
dix A f o r  par t icular  problems by specializing the foregoing general resul ts .  

O(E- ' /~)  f o r  smooth loading. Equa- 
$e 

If the boundary conditions are  prescribed with respect t o  stresses, the 
following equations must apply a t  an edge: 

N~(cos'cp - E-$ s in  cp)  = H (49) 

N5(sin cp + E-$ cos cp) = V (50) 

These equations a re  the nondimensional form of equations (13) and (14) .  The 
s t r e s s  resul tants  given by H and V cannot be prescribed independently of 
each other but must be related by the following expression which i s  obtained 
from equations (49) and (50): 

(51) 1/2 v cos cp - H s in  cp = o(e ) 

Equation (51) i s  necessary i n  order t o  insure tha t  rotations a re  not greater i n  
magnitude than the order of the square root of  the  s t ra ins ,  since t h i s  i s  the 
basis fo r  the present theory. However, f o r  the physical problems involving 
deep membranes which actual ly  occur i n  practice, the behavior implied by equa- 
t ion  (51) i s  the usual case. This i s  c l a r i f i ed  by the cases t reated i n  appen- 
dix B, which presents more specif ic  indications of actual  s t r e s s  boundary 
conditions. 



FESULTS AND DISCUSSION 

Particular problems are  solved i n  the appendixes which i l l u s t r a t e  the use 
of the general r e su l t s  obtained. Stresses and displacements a re  calculated i n  
appendix A f o r  the special  cases of a spherical membrane under in te rna l  pres- 
sure and of a rotat ing spherical membrane, both attached to  hubs. These calcu- 
la t ions are performed by specializing the general formulas i n  the tex t .  The 
resu l t s  of these calculations, which give s t resses  and displacements, are  shown 
i n  figures 2 t o  4. 

- 
In figure 2 the maximum physical rotation +e,max a t  the hub i s  plotted 

against hub angle El f o r  several values of , the  s m a l l  parameter E = - pR In 

the parameter E, R i s  the radius of the membrane, whereas the quantity p 
represents the in te rna l  pressure for  the pressurized membrane and the centr i f -  
ugal force per uni t  area (p = phn2R) f o r  the rotat ing membrane. In the case of 
the pressurized membrane, +e,max is  independent of the hub angle 5 ,  whereas 
i n  the case of the rotat ing membrane it decreases with 
show the nondimensional s t r e s s  resultants N and Ne and the displacement w 

i n  each case, which occur near a hub having a hub angle The differ-  
ences between l inear  and nonlinear membrane theory are  c lear ly  indicated by the 
boundary-layer regions near the hub. The curves for  the displacement w show 
that  l inear  theory does not allow sat isfact ion of the boundary condition a t  the 
hub i.e.,  

here t o  accomplish t h i s  condition. 

Eh' 

- 
El. Figures 3 and 4 

E 
El = 45'. 

w(El) = 0 )  so tha t  nonlinear membrane boundary layers are  needed ( 

Although the  s t resses  a re  posit ive fo r  the pressurized spherical membrane, 
it i s  interesting t o  note that ,  i n  the case of the rotat ing spherical membrane, 
the circumferential s t r e s s  becomes negative in  a small region near the hub 
so tha t  wrinkling can occur i n  tha t  region. 

Ne 

In appendix B, two problems are  given fo r  which boundary conditions are 
prescribed on both s t resses  and displacements. 
s t resses  are  calculated for a cylindrical  pressure vessel. 
(eqs. (B19) i n  appendix) give the resu l t  o f  computing the membrane s t r e s s  
resultants NE and Ne a t  the juncture of an a rb i t r a r i l y  shaped cap and a 

cylinder. The s t resses  are 

In  the f irst  problem, juncture 
Equations ( 5 2 )  

1 NE = - 
2 

1 

4RE, J 
N - 1 - -  e -  

The resu l t s  in  equations (52) show that  NE i s  always positive, whereas Ne 
can become negative when the r a t i o  of the meridional radius of curvature of the 
cap at  the juncture t o  the radius of the cylinder i s  l e s s  than 1/4 ( i .e . ,  

< L). It i s  interest ing t o  note tha t  the r e su l t  of l i nea r  membrane theory, RE,J 4 

16 

I 
~~ - ._ . ... _. . .. . .. ...... .. .. - . . . . .. - .. . .. .. ._ . 



obtained by dropping eel 

cates tha t  Ne becomes negative when Re, J is  only l e s s  than 1/2. 
i n  equation (53) (eq. (B5) i n  the appendix), indi- 

Also, i n  contrast t o  nonlinear membrane theory, l inear  theory yields discontin- 
uous s t resses  a t  the juncture. These s t resses  are  shown i n  figures 5 and 6 for  
the case of a spherical and a tor ispherical  cap, respectively. The s t r e s s  Ne 
i s  plot ted i n  these figures, with the boundary layers necessary t o  maintain con- 
tinuous s t resses .  

The second problem in  appendix B concerns the a r r e s t  of a moving r ig id  
mass attached t o  a pressurized spherical membrane. This problem shows tha t  the 
general resu l t s  i n  the t ex t  of fe r  a convenient means of obtaining the necessary 
relat ion between the unknown edge s t r e s s  resultant and deflection a t  points of 
contact between the m a s s  and membrane (i. e., relations similar t o  influence 
coeff ic ients) .  
of values of i n i t i a l  velocity of m a s s .  The resu l t s  are  shown i n  figure 7 where 
the quantit ies a re  plotted against a kinetic energy parameter 

Maxi” st resses  and displacements are  calculated fo r  a range 

CONCLUDING REMARKS 

Closed form analytical  solutions have been obtained fo r  the equations of a 
nonlinear membrane theory in the case of deep membranes of revolution under 
a rb i t ra ry  but otherwise ax ia l ly  symmetric surface loads where the membrane 
geometry and loading are  also assumed t o  be smoothly varying. The solutions 
are  found t o  be accurate t o  within errors  of the order of the square root of E 
with respect t o  unity, where E i s  a small parameter which has a magnitude 
character is t ic  of s t ra ins .  The nonlinear behavior is represented by exponential 
type terms which decay rapidly away from the boundary. 

Expressions f o r  the constants of integration which appear i n  the solutions 
have been obtained i n  general form for  the class  of problems i n  which boundary 
conditions are  prescribed on displacements. The general resu l t s  can be special- 
ized i n  a straightforward manner t o  handle specific problems. This specializa- 
t i on  i s  accomplished i n  the par t icular  cases of a pressurized membrane and a 
rotat ing spherical membrane, both attached t o  r ig id  hubs. 
displacements fo r  these two examples exhibit the expected boundary-layer behav- 
ior .  
brane, the  circumferential s t r e s s  can become negative i n  the  rotat ing membrane 
f a -  cer ta in  values of the parameter 

The s t resses  and 

Also, whereas the s t resses  a re  always positive i n  the pressurized m a -  

E, so that  wrinkling can occur. 



For problems i n  which boundary conditions are prescribed on stresses,  it 
is  found that, according t o  the present theory, the ver t ica l  and horizontal 
edge s t ress  resul tants  cannot be prescribed independently of each other but 
m u s t  be related i n  a par t icular  way. 
conditions are prescribed on both s t resses  and displacements. The f i rs t  con- 
cerns juncture s t resses  f o r  a cyl indrical  pressure vessel for which boundary 
layers eliminate the usual stress discontinuities character is t ic  of l inear  mem- 
brane theory. Also, i n  t h i s  case, nonlinear theory predicts t ha t  negative c i r -  
cumferential s t resses  at  the juncture can be avoided i f  the r a t i o  of the merid- 
ional radius of curvature of the end cap t o  the radius of the cylinder at the 
juncture i s  greater than 1/4. (Linear membrane theory gives 1/2 fo r  t h i s  
r a t io . )  The second example involves the a r r e s t  of a moving r ig id  m a s s  attached 
t o  a pressurized spherical membrane. For t h i s  example, the general solution 
provides a convenient l inearized form fo r  the necessary re la t ion  between edge 
s t r e s s  and corresponding edge deflection ( i . e . ,  similar t o  influence coeffi-  
c ien ts ) .  This allows a straightforward determination of maximum stresses  and 
deflections f o r  a range of i n i t i a l  veloci t ies  of the mass. 

Two examples are  given i n  which boundary 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., November 22, 1965. 
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APPENDIX A 

PARTICULAR PROBLEMS WITH BOUNDARY CONDITIONS ON DISPLACEMENTS 

Two examples are given for deep membrane problems in which boundary condi- 
tions are prescribed on displacements only (i.e., the membranes are attached to 
rigid hubs). The solutions are obtained by a straightforward specialization of 
the general results given in the text. 

Pressurized Spherical Membrane Attached to Hubs 

In the special case of a spherical membrane attached to a hub and of rad- 
ius R and internal pressure p, the various quantities defined for  the general 
problem are specialized. From equations (l), (2), (3), and (17) and from other 
relations the quantities are reduced as follows: 

a = l  r = sin 5 

a = R  

From equations (l5), (16), and (17) 

pv = -(cos 5 - e+ sin E )  (A3 1 

The solution for the rotation given by linear membrane theory 
f r o m  equations (18) to ( 2 3 )  by setting E = 0. In this case 

\I’L can be found 

The various other relevant quantities which appear in the general solution given 
in the text may now be evaluated. 



E l + v  E - de = (1 + v)log tan - f3(5) = Ll2 s i n  E 2 

-(1 - v) 
f+ = cos 5 

The constants of integrat ion c and d given by equations (47) and (48) can 
now be calculated by using equations (A5). The solution f o r  c i s  

cos E I (  l + v  - 1 + -) 1 - v  
2 

c =  . = o  
(1 + v)(log tan 2 51 - cos E, CSC25J 

Then from the def ini t ion of q(5) obtained from equation (34), q(5) = 2 so 
tha t  the  solution f o r  d i s  

1 1 - v  
d = - F ' s  

The maximum rotat ion a t  the  hub E = 5 ,  i s  (see eq. (37)) 

= dq -1/4 1 - v  
= - Tz- Jre,max 
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The solutions f o r  the stresses and displacements are determined from the gen- 
e r a l  results given by equations (27), (29), (37), (38 ) ,  and (41). For t h i s  
problem they are 

1 > 
N! = 

- 1 1 - v e  
N e - , - - -  2 

G 

1 - v  
2 u = - s i n  5. 

-(1 - v) 1 - v  cos 5. + - cos 5 ,  e 
2 

w =  

The solution given by equations (A9)  i s  accurate t o  within errors  of order 

O ( E ~ / ~ )  with respect t o  unity, as w a s  indicated by the general r e su l t s  i n  the  
body of the paper. Also note tha t  the l inear  membrane solution i s  exactly what 
remains when the exponential terms are dropped from equations (A9). 

Rotating Spherical Membrane Attached t o  Hubs 

For a ro ta t ing  spherical  membrane the  radius of t he  membrane attached t o  
a hub i s  also denoted by R. However, t he  character is t ic  loading quantity p, 
which i s  discussed i n  re la t ion t o  equations (l7), a r i se s  from centr i fugal  
forces and i s  given as 

2 p = phR R 

where p i s  the mass density of membrane material  and R i s  the frequency of 
rotation. The relevant quant i t ies  used f o r  the  ro ta t ing  spherical  membrane are 
given as 

pH = 2 a = R  p = phR R 1 
21 



The l inear  solution for the rotation 

t o  (23) by se t t ing  E: = 0. The r e su l t  i s  
qL i s  obtained from equations (18) 

q, = - ( 3  + v)sin 5 cos 5 

Under these conditions the functions of  5 are  given by 

f , ( C )  = 1 + v 

+ dfr = (1 + v)log tan - 5 
2 

n P  

f4(5)  = v sin35 d5 = -v cos 5 + v cos35 
fl/2 

f+)  = c ~ ~ 3 5  + 5 

~ ( 5 )  = -sin25 

The constant c given by equation (47) then reduces t o  

51 cos 5,  CSC2t1 - log tan - 2 

For t h i s  case, from equation (34), 

This resul t ,  together with equation (48), gives the  following r e su l t  fo r  d: 

22 



is now e,- The expression for $ 

The stresses and displacements a r e  then given by 

C NE = - 
s in2E 

EC sin El ( c o s  51 - cos 5 I + sin35 J sin 5 -F 
- c ( l  + v) + u =  
sin E 

5 w = ~ ( i  + v)iog tan - + + 5 
2 

The form of these equations and the numerical results based on these equations 
are essentially the same as those given in reference 2. 

23 



APPENDM B 

PARTICULAR PROBLEMS WITH BOUNDAFX CONDITIONS 

ON BOTH STRESSES AND DISPLACEMENTS 

End Cap Attached to a Cylinder Under Internal Pressure 

Stresses and displacements are calculated at the juncture of an end cap of 
arbitrary but rotationally symmetric shape and a cylinder under internal pres- 
sure. Solutions are first obtained separately for the cap and cylinder by 
using the general results found previously. Then the constants of integration 
are evaluated by using suitable matching conditions at the juncture. For this 
problem a boundary layer is expected at the juncture i.e., cp = F, fig. 5). 

Cap solution.- The internal pressure p is taken as the characteristic 
loading quantity of equations (17). For the cap solution then, pn = 1 and 

pt = 0 

Jr ( 

so that the horizontal and vertical loads are 

pH = sin cp + E$ cos cp (BO 

Also, for the cap solution, the quantity a 
the radius of the cylinder 

used in equations (17) is taken as 
RL so that the small parameter is given by 

Now, from equation (26) and with the relation r '  = a cos cp 

Equation (27) is next used to obtain an expression for 

integration c is taken to equal zero so that the solution reduces to the 
linear membrane solution outside of the boundary layer. The stress result- 
ant NE is then given by 

. The constant of Ne 

r 
2 sin cp 

NE = 
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From equation (29) Ne i s  obtained: 

The boundary-layer solution for  the rotation $e i s  given 
i n  t h i s  case becomes 

035) 

by equation (37) and 

where 

and EJ  i s  the value of  5 a t  the juncture. The displacements can be obtained 

with the help of equations (38) and (41) and are  given by 

u = - 7(g r 2  
2a s in  s i n  cp 

where 

It Cylinder solution.- For the cylinder solution, a = 1, r = 1, and cp = - . 
2 

Note also, for t h i s  solution, t ha t  the coordinate 5 i s  the r a t i o  of the dis- 
tance along the cylinder t o  the radius The corresponding solutions f o r  
s t resses  and displacements are obtained and, t o  an accuracy with an error  of 
O( compared t o  unity, give 

RL. 



u = 1 - C2€lJre' - vc2 

= (c2 - v ) e  

$e = dl exp - - ( l e  - EJI) 

The constants of integration are now evaluated by requiring t h a t  the displace- 
ments a re  continuous and the forces are  i n  equilibrium a t  the  juncture of the 
cap and cylinder. 
equations (13) and (14), so tha t  the matching conditions are as follows. 

the  juncture, where 

The general form fo r  the  boundary conditions i s  given by 
A t  

IT cp = 5, these conditions require tha t  

Ucyl = %aP 

wcyl = wcap 

- - 
N%yl cap 

(B16a) 

( ~ 1 6 b  ) 

The subscripts cy1 and cap re fer  t o  the  cylinder and cap. The constant c1 
appears only i n  equation (Bl5b), so  tha t  the  other three conditions can be 
solved d i r ec t ly  f o r  d, c2, and dl. Equations ( ~ 1 6 a )  and ( ~ 1 6 b )  yield 

1 
2 

c2 = - 

d 
dl = 4% 

Equation ( B l 5 a )  i s  then used t o  get 
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where R 6 , j  and aJ denote values of RE and a a t  the  juncture. If the 

s t resses  are  now computed a t  the  cap-cylinder juncture, it i s  found tha t  NE 
and NQ are  given by 

N e = l - -  1 

4RE, J 

Arrest of a Moving Mass by a Pressurized Spherical Membrane 

The f ac t  t ha t  masses may be attached t o  pressurized spherical  membranelike 
structures during deployment of space vehicle packages makes it of i n t e re s t  t o  
calculate the maximum s t resses  which would occur i n  the  a r r e s t  of such masses. 
The general solutions i n  t h i s  paper offer  a convenient means f o r  calculating 
these s t resses .  In the present problem it i s  assumed that ,  i n  the deployment 
operation, no extensional s t ra ins  are suffered by the folded membranelike 
material as it unfolds u n t i l  the  spherical  shape is  completely formed; it i s  
a lso assumed tha t  the  velocity of the moving m a s s  i s  known (from other consid- 
erat ions)  a t  t h i s  instant .  From then on membrane s t ra ins  ex is t  and contribute 
t o  the a r r e s t  of the moving m a s s .  

For the pressurized spherical  membrane (see f i g .  8),  

a = R  P t  = 0 

From equations (l5), (16), and (17) 

From equation (26) 

pv = -(cos E - E+ s in  5 )  

pH = s i n  E + E+ cos E 

The edge of the membrane which i s  attached t o  the r i g i d  m a s s  
no displacement C while the m a s s  i s  moving ( f ig .  8).  A t  t he  same time there 
w i l l  be a ve r t i ca l  edge force V because of the deceleration of the m a s s ,  so 
t h a t  the  appropriate boundary conditions a t  5 = tl, i n  dimensionless form, are 

E w i l l  suffer  
- 
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U(E1) = 0 

N e (  s i n  5, + EJr cos El) = V 

Equation (B23) and equation (27) yield 

If t h i s  expression f o r  NE 

O( &I2) cancel ident ica l ly  so tha t  the following re la t ion  i s  obtained: 

i s  substi tuted in to  equation (B25), the terms 

C V =  + 1; s i n  5, + o ( E )  
s i n  El 2 

Next, an expression f o r  Ne i s  obtained from equation (29): 

where 

s in2E 
q =  

sin25 
c + -  2 

If the boundary condition (eq. (€324)) i s  now applied and terms of order 
O ( E ~ / ~ )  are neglected since they are small compared t o  unity, t he  following 
equation i s  obtained: 

Equation (B29) can be used t o  calculate the constant d: 
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An expression for the displacement w at 5 = El will be needed. First, note 
that 

7 s(e) = -1 

f3(5) = (1 + v)log tan - I :I I 
Equation (41) evaluated at 5 = 5 ,  gives 

or 

where 

B(S1) = $ 

Equations (B32) provide a relation between the as yet unknown V and the dis- 
placement w at 5 = El. Another relation is needed to determine the maximum 
deflection wmax , which occurs during the arrest of the mass. This relation 
can be obtained by equating the work done by the edge resultant V to the 
kinetic energy of the moving mass at the instant the spherical shape is formed. 
When written in terms of physical quantities this relation is 

Equation (B33) can be written in terms of nondimensional quantities: 

V dwl = % 

I 



where the nondimensional parameter kE -) is seen to be 

.proportional to the initial kinetic energy of the mass. The integration in 
equation (B34) can be performed directly if the relation between V and wl 
given by equations (B32) is used. The following result is then obtained: 

The m a x i "  deflection w1," 
tions (B27),  (B3O), and (B32) are associated with this deflection and can be 
used to calculate c, d, and V, and therefore the maximum stresses. Maximum 
values of Ne, Ne, 
against the parameter kE. 

can be determined from equation (B35) .  Equa- 

w, and Jre at 5 = El (tl = 13") are plotted in figure 7 
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Figure 2.- Maximum ro ta t ion  $re,- at  hub 5 = 5 ,  ( v  = 0.3) for ro ta t ing  

and pressurized sphericalmembranes. 
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Figure 3.- Displacement w near hub (E1 = 45') for pressurized and ro t a t ing  
spherical  membranes ( v  = 0.3). 
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Figure 4.- Stresses  NE and Ne near hub (E1 = 45') for pressurized and 

ro ta t ing  spherical  membranes ( v  = 0 .3 ) .  
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Figure 6.- Stress Ne near juncture of a cylindrical pressure vessel and 
a torispherical cap. 
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Figure 8.- Notation f o r  arrest of mass by pressur ized  spher ica l  membrane. 
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